用字母表示数
教学内容:苏教版五年级上册第八单元教科书第99-100页例1-例3、“练一练”和“你知道吗”,第103页练习十八第1-3题。
教学目标:
1.使学生在现实情境中理解用字母表示数的意义,初步掌握用字母表示数的方法,会用含有字母的式子表示数量和公式,掌握含有字母的乘法式子的简写方法。
2.帮助学生理解含有字母的式子不仅可以表示数量,还可以表示关系;初步掌握字母表示数的实际取值范围。
3.在探索用字母表示数的过程中,使学生经历用字母和含有字母的式子进行表达抽象的过程,体会用字母表示数的概括性、简洁性,发展符号感。
4.通过情景、数学活动激发学生学习数学的兴趣,积累丰富的数学活动经验。
教学重点:理解用字母表示数的意义、掌握用字母表示数的方法、体会用字母表示数的优越性、会简写
教学难点:理解含有字母的式子不仅可以表示数量,还可以表示关系;能用含有字母的式子表示数量、字母的取值范围
教学过程:
一、引入
1.读了这个课题,你有什么问题想问的?
2.学生提问
3.刚才同学们的问题归纳起来有这些:哪些字母可以用来表示数?怎么表示?有什么用?看看通过今天的学习,我们能不能解决这些问题。
二、确定的数
1.出图,呼啦圈,这是我们创意课间操游戏的工具,今天的研究就从呼啦圈开始。
1个,用数1表示;有5个,用数5表示;这里一共有24个……有几个呼啦圈就可以用数几表示。
2.学校又买来了一大袋,这袋一共有几个呼啦圈?
板书:一袋有()个
3.这个与刚才的情况有什么不一样?
预设
(1)学生回答:现在呼啦圈的数量是未知数。他说了一个关键的词语,未知数,什么是未知数?暂时不知道
(2)如果学生不回答:启发,现在袋子里的呼啦圈,你还能用一个数来表示吗?这是数暂时不知道,未知数
板书:未知数
4那刚才的是——已知数
未知数不知道该怎么表示呢?有没有办法表示?你怎么知道的?
预设:看了课题;书上看过……
5.为什么不能用a呢?这个未知数,还可以用哪些字母?
是的,未知数可以用字母表示,随便哪个字母都可以。
6.黑板上的哪个问题解决了?
(1)字母,大小写都可以,还有其他字母,不仅仅是英文字母。
(2)什么叫表示?师:你现在知道什么叫表示了吗?
(3)生:用字母表示未知数,简洁方便
7.这袋呼啦圈不知道个数,我们用字母来代替数。看来用字母表示数的作用,我们还不能一下子说出来,那我们就继续来研究用字母表示数的作用。
三、字母式表示运算结果
1.看屏幕,观察思考,注意:只看不讲,现在放入3个呼啦圈,现在袋子里一共有几个?
学生在草稿本上写一写,只需要写答案。
【预设】学生答案:X+3;Y;(巡视,学生自己把答案写黑板上,还有不同答案吗)
同学们有不同的答案,想知道他们的想法吗?
2.学生介绍自己的想法。其余同学质疑回应。
感谢这些同学给大家讨论的资源。
3.交流:x+3为什么是对的,含有字母的式子,叫字母式。重要的问题又来了,y与x+3哪个答案更好?
同桌讨论:
(1)比较“x+3”和“y”,有什么不同?
(2)哪一种表示更合适?为什么?
4.+3,看得出变化了。这里的x+3表示算式呢?还是表示结果?
学生发表不同看法。
看来同一个字母式,既表示算式,还表示结果。
四、数和字母、字母和字母相乘,省略乘号
1.拿出3个,恢复到原来的样子,现在袋子里有几个(X)。
板书:平均分给8个班,正好分完,每班分()个。
生写在自备本上。
2.X÷8,这里的字母式是算式还是结果。
板书:每个花了5元钱,一共要()元。写在纸上
3.辨析:X×5;5×X;5X(有不同答案吗)这些都表示的是一共的价钱。你喜欢哪种写法。
4.介绍简便写法,数字与字母相乘的时候,可以省略乘号。推荐大家写简洁的写法
字母和字母相乘 字母和数相乘 时乘号可以省略,规则如下: |
举例说明 |
|
1.字母和字母相乘 |
不同字母相乘,乘号可省略为“•”(读作:乘),也可省略不写。 |
a×b=a·b=ab |
相同字母相乘,乘号也可省略为“•”,或直接写成这个字母的平方。 |
a×a=a·a=a² a²读作:a的平方 |
|
2.字母和数相乘 |
字母和数相乘,乘号也可省略为“•”或省略不写。但要把数写在字母的前面。 |
a×5=5a 7×b=7 b |
字母与1相乘,1可以省略不写。 |
1×a=a y×1=y |
5.交流:字母与数相乘,乘号可以省略,那么在除法中,X÷5中的除号可以省略吗?
同学们很善于思考。这有几个题,请看
练习:
a×c b×4 z+z+z x×1 x×x
6.和字母在生活中都很有用。如果生活中只有数或者只有字母,会很不方便的。所以它们都是必不可少的。
7.数学文化,拓宽视野
你知道吗?
五、练习
1. 填表
(1)甲乙两地之间的公路长280千米,一辆汽车从甲地开往乙地,已经行驶了b千米,还剩下(280-b)千米。
(2)兔、蘑菇、兔、蘑菇……兔,按照这样的顺序一一间隔排下去,如果蘑菇是y个,兔是(y+1)只。
在这里y+1是兔子的数量,你还能发现什么?
用含有字母的式子y+1清楚地表示变化规律,看来字母不仅可以表示数,表示数量关系,还可以表示变化规律。
(3)原价b元,半价销售,现价为b÷2,请问这里的b可以是什么?
可以是铅笔的单价,可以是讲义夹……的单价。可以是货架上的任意商品
(4)每辆车4个轮子,a辆车就是4a个轮子。
2.字母也可以和具体数一样参加加减乘除运算,从而写出含有字母的式子,这些式子可以用来表示新的数和数量关系。
一个正方形的一条边用a表示,4a表示?周长用C表示,那么C与4a的关系是?C=4a
用S表示面积呢?S等于什么呢?S=a²
说明字母还可以表示图形的计算公式。
3.一家的年龄
小明今年n岁,爸爸n+26岁,今年小明8岁,爸爸今年()岁。
小明家中有一个人的年龄是n+24岁,这个人是小明的(),不是小明的()
这里的n可以是任意数吗?范围
同学们,学到这里,你知道用字母表示的作用了吗?
六、总结:
这节课我们学习了用字母或含有字母的式子表示数,表示数量关系,表示变化规律,知道字母可以和数一样参与运算、进行推理。
板书设计:
用字母表示数
(范围)
未知数用字母表示→字母式
一袋有(x)个, 放入3个,现在有(x+3)个。
每个10元,一共要(5x)元。
平均分给8个班,每班(x÷8)个。