让数学课堂成为真正的学生思维场<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" />
江阴市夏港实验小学 缪美媛
摘 要:思考是一种广泛搜寻、深入探究、更富挑战性的智力活动,也是学生对数学知识进行深刻认识和理解的过程。思考能力的高低是衡量学生数学能力的标尺。注重学生思考能力的培养,是关注学生可持续性发展的一个重要保障。因此,在课堂教学中,需要教师转变教学思路,站得更高些,挖得更深些,放得更开些,去促进学生主动、独立、深刻地进行思考,帮助学生形成思考力。
关键词: 引导理解 促进探索 培养思考力
在教学中,我们常常遇到这样的现象:学生的口算能力很强,但是综合计算、简便计算的水平很差,新授课的练习正确率非常高,但真正综合起来练习就问题百出,复习课反复练习,考试时如果题型变化,学生就束手无策。这样的现象很普遍,原因到底在哪里呢?归结起来发现,其实就是学生在学习过程中没有一个真正地、独立思考的过程,也就是缺少思考力。思考力的形成需要建立在真正意义的理解基础之上,要求老师在教学过程中注重数学思维能力的培养,加强数学思考方法的渗透,给学生一定的空间和时间,创造平台,去拨动学生主动探索和思考的心弦。
一、引导学生实现对数学知识和方法的真正意义上的理解。
首先,挖掘数学知识之间的密切联系,让学生“知其然也知其所以然”。例如,小数除法是小学数学教学的难点之一,很容易出错。如果教师紧紧抓住小数除法与整数除法的联系,小数除法内部知识之间的联系,学生的学习就有可能稳步推进,实现真正意义上的理解。首先,小数除法学习的是除数是整数的情况,这里要让学生联系整数除法的知识掌握小数除以整数的计算程序,关键是学会并理解确定商的小数点位置的方法;接着进一步接触小数除以整数的不同情况,如除到被除数的末尾还有余数的,整数部分不够除的等等,掌握试商方法。在此基础上,学习除数是小数的除法,只要让学生明确除数是小数的除法需要将除数转化成整数,将新知转化为旧知,按照除数是整数的除法进行计算。但为了保证转化不改变原来的结果,因而转化的过程中需要应用商不变的规律,将被除数和除数乘上相同的数。了解到知识之间的联系后,学生的新知学习就能很好地建立在已有知识经验的基础之上,学习会变得更容易;同时,学生还能很好地把握知识的整体结构,理解得也会更加深刻,应用起来也能更加自如。
其次,经历知识的形成过程。知识的形成需要一定的过程,如果忽略过程直接告知结果,那么知识就如没有长根的浮萍,经不起时间的考验。公式的推导、规律的发现、技能的形成、方法的习得等都不能急于求成。虽说学生的学习不可能也不必要像当初数学家首次发现知识那样经历漫长的过程,但是需要教师创设一定的情境,引导学生由表及里、由浅入深、由此及彼,逐步感悟数学知识发生、形成和发展的过程。比如,教学《长方体的体积》一课。教师设计一项操作活动,让学生用体积是1立方厘米的小正方体搭成大小不同的长方体,通过数小正方体的个数来计算长方体的体积。在数的过程中,知识慢慢发生了:学生会逐步发现小正方体的总个数刚好等于每排的个数×每一层的排数×层数。这是基于操作的观察和联想。这时,教师会有意识地将操作中的数据以表格的方式呈现,以帮助学生确认刚才的猜想,并在头脑里回想用小正方体搭长方体的过程(从动作操作上升到表象操作),但严格意义上说,抽象的数学公式还未形成。教师继续引导学生进行抽象概括:小正方体的总个数就是长方体的体积,每排的个数就相当于长方体的长,每一层的排数相当于长方体的宽,层数就相当于长方体的高,因而,长方体的体积=长×宽×高。这时,长方体的体积公式就形成了。当然,学生在后续的学习中,还要学会将之特殊化,得到正方体的体积公式。
最后,体会数学的应用价值。在知识形成之后,教师要努力寻找现实的数学原型,引导并鼓励学生应用所学知识去解决实际问题。这样,不仅可以培养学生浓厚的学习兴趣,也能让学生在具体的应用过程中进一步理解、掌握知识,体会数学的应用价值。在这一过程中,需要特别加以考虑的是情境的变化、问题表述的现实性和数量关系的复杂程度、方法的多样性等几个要素。
只有学生形成了对于知识和方法的真正的理解,才能实现发现本质、举一反三的能力。也只有这样,学生才能真正地进行深刻的思考,从而实现从“学会”到“会学”的过程,这样的知识才不至于“学过就忘”。
二、让学生在数学知识的发生、发展、形成的生动过程主动参与思考。
如果能将一堂课教学的知识置于整个知识体系中,既让学生充分感受数学的整体性,又体验到某些知识可以从不同的角度加以分析、从不同的层次进行理解,学生会强烈的感受到数学的内在逻辑体系、自身魅力,就会产生主动探索,积极思考的动力。以一堂分数的基本性质为例,看看老师是如何做的:
导入——在数的王国里找相等的数。
1.唤起经验。在数的王国里,我们已经认识了整数、小数、分数。谁来找一个和0.3相等的小数?(和0.3相等的小数有无数个)你能找到和3相等的整数?(一个整数找不到和他相等的整数。)
2.引发冲突。你能找到和1/3相等的分数吗?(学生可能猜测:1/3= 2/6)教师追问:1/3是否和 2/6相等?这里面藏着怎样的奥妙?今天我们就来研究。
课一开始,一反从现实情境引入数学教学的方式,而是换一种视角,试图以数学知识本身的内在魅力来打动学生,“会当凌绝顶,一览众山小”。再来看找相等的数,细细想来,学生学过的所有数有不同,整数每一个都是独一无二的,找不出和它相等的整数;小数,只需在小数末尾添零就可以得到无数个与之相等的小数,而学生所要面对的分数,虽能找出和它相等的分数,情况又有不同,相等的分数它们的分子、分母各不相同。这些内隐的规律颇为有趣,而这恰恰体现出了数学的神奇魅力。于是本课开篇,就在数的广阔范围内来寻找与之相等的数,让学生对于这种司空见惯现象背后的规律有了一定的体验,同时感觉数是好玩的、有趣的,进而让这种有趣好玩的良好情感体验伴随着新课的展开,让数学的魅力得以充分彰显,进而产生去进一步探索期间内在规律的强烈欲望。
探索——把学生的每根神经都调动起来。真正拨动学生思维的弦。
探索一:你能寻找到和1/3相等的分数吗?
学生观察四个同样大小的圆,用分数表示图里的涂色部分。借助图,直观比较涂色部分,找到了一组相等分数:1/3=2/6=3/9发现找相等分数的方法:只需要观察涂色部分,直观的比较,就能找到相等的分数。进而引导学生初步感知分数相等的现象:这三个分数的分子、分母都不相同,他们的大小居然相等,有意思啊!分子、分母不同的分数中,有些分数的大小相等,有些分数不等。
探索二:借助正方形纸,能寻找到和1/2相等的分数吗?
学生很快想到:只需将正方形纸对折再对折,就可以找到和 1/2相等的分数。
动手操作后交流:
学生1:连续对折两次,与1/2相等的分数是2/4, 1/2和 2/4都表示的是同一块涂色部分,所以1/2= 2/4;
学生2:连续对折三次,与1/2相等的分数是4/8, 1/2和 4/8都表示的是同一块涂色部分,所以1/2= 4/8;
学生很快找到了:1/2= 2/4、1/2= 4/8、1/2= 8/16……这些分数分子、分母各不相同,为什么都与1/2相等?
想象对折,继续寻找和1/2相等的分数:不动手折,想象一下,如果继续往下折,还能找到和1/2相等的分数吗?学生还可能找到16/32、32/64……
探索三:寻找两组分数相等背后的奥秘。
指导探索方法:观察每个等式中的两个分数,他们的分子、分母是怎样变化的?
学生自主探索,发现每组等式间蕴藏的一般规律。
如1/2=2/4,1/2的分子分母同时乘2,得到和它相等的 2/4。反之,从右往左看, 2/4的分子分母同时除以2,得到和它相等的1/2。……学生很快发现,每个等式都藏着这样的规律。
再看1/2=2/4=4/8=8/16,任意两个分数之间,它们的分子、分母是否也蕴藏着这种变化的规律?
我们还找到了这组等式:1/3= 2/6= 3/9,是否也存在这样的规律呢?
进而概括提升出分数的基本性质。
这里,以寻找与原分数相等的分数贯穿整个探索过程:原先是不善于寻找,凭直觉进行寻找——在找到一组相等分数后发现方法(只需比较涂色部分)——随后放手自行寻找,主动发现另一组相等分数——进而在两组实例基础上提出猜想、举例验证,从而发现其间蕴藏的重要规律——最终利用分数的基本性质能很快寻找出相等的分数,感受运用规律的便捷。这一找相等分数由不会到较熟练的过程需要尽量凸显,在凸显中,学生探索的动力得以增强,思考的能力得以提高。
三、提升方法,促进思维的深入,引导学生学会思考
让学生学会思考可以从以下几方面着手:
设计好的问题。所谓好的问题是指有思考价值的、学生经过努力能解决的问题。这就意味着问题不能过浅,学生不假思索就可以找到答案;问题也不能过难,学生“跳一跳”也够不着。
教给思考的方法。小学生因为生活经验、知识基础等方面的原因,面对问题往往无从下手,因此,教师要注重教给他们思考的方法。如解决实际问题时可以从条件想起,也可以从问题想起,让学生明确思考的方向。在学习新知识的时候,可以联系相关的旧知识进行思考,发现新旧知识的不同点,从而得出新的结论。在发现规律的过程中,可以通过猜想、验证的方法进行研究,等等。
分享思考的过程。在课堂交流反馈时,教师不仅要关注学生思考的结果,也要关注思考的过程,要让学生完整地表述自己的思考过程,使得交流反馈成为学生互相学习、借鉴思考方法的良机。
引导学生透过现象看本质。在数学教学中,教师要深入研究教材,把握知识点的本质所在,从而培养学生思维的深刻性。如,在一年级教学用加法(减法)解决的实际问题时,教师不要满足于学生利用已有的经验正确列式解答,还要让学生学会分析题中的数量关系,理解这样解答的道理。这样,学生才能逐渐深入地把握问题的本质。
要培养学生举一反三的能力。从学习内容入手,如根据除法中商不变的规律思考分数中可能存在的性质,由分数的基本性质联想比中存在的基本性质。也可以是从学习方法入手,如由三角形面积计算方法的推导过程想到梯形面积计算方法的推导。还可以从解决问题的策略入手,如计算1/2+1/4+1/8+1/16,通过转化的策略将原式转化为1-1/16。而在解决“有16支足球队参加比赛,比赛以单场淘汰制(即每场比赛淘汰一支球队)进行。想一想,一共要进行多少场比赛才能产生冠军?”也可以运用转化策略,将问题转化成“一共要淘汰多少支球队”。只有在平时的教学中注重培养学生举一反三的能力,学生面对复杂问题的时候才能灵活变通。
数学,它不仅仅是知识,从思维的角度来看,它更关注方法,数学教学在更大程度上是数学思想方法的渗透,思考能力的培养,让我们一起努力,去拨动学生主动思考的心弦,让学生拥有主动探索的能力,让数学课堂成为真正的学生思维场。
参考文献:
《此岸与彼岸Ⅱ》贲友林 ……… 江苏凤凰教育出版社
《基于数学理解的教学实践》屈佳芬 ………《小学数学教与学》2018第2期